==
DeVry College of New York
COMP 220
Lab #6: Overloaded Operators
[bookmark: _GoBack]Name – DSI– June 12, 2014

Objective: Write a program that defines a new set of data-type, dependent operations on existing operators, or functions.
Tools required: PC & Visual studio software

Code:
// COMP 220 Week 6 Overloaded Operators

//Main.cpp
#include <iostream>
#include <iomanip>
#include "ComplexNumber.h"
#include <math.h>
#include <windows.h>

using namespace std;
int main(void)

{

 cout << "This Overload operator performs complex math Addition, Subtraction, Multiplication and Division operations on complex data. "
 << endl << "All using operator overloading." << endl << endl;
 cout << "Expressing 3 objects of class complex number" << endl << endl;

 ComplexNumber compOne(6.0, 7.0);

 ComplexNumber compTwo(2.0, 8.0);

 ComplexNumber compThree;
 cout << fixed << setprecision(4) << showpoint;

 cout << "Complex Number 1 real part = " << setw(4) << compOne.getRealPart() << endl;

 cout << "Complex Number 1 image part = " << setw(4) << compOne.getImagPart() << "j" << endl;

 cout << "Complex Number 2 real part = " << setw(4) << compTwo.getRealPart() << endl;

 cout << "Complex Number 2 image part = " << setw(4) << compTwo.getImagPart() << "j" << endl;

 cout << "Complex Number 3 real part = " << setw(4) << compThree.getRealPart() << endl;

 cout << "Complex Number 3 image part = " << setw(4) << compThree.getImagPart() << "j" << endl;
 cout << endl << "Set Complex 3 equal to Complex 1 using overloaded assignment operator." << endl << endl;

 compThree = compOne;
 cout << "Complex Number 1 real part = " << setw(4) << compOne.getRealPart() << endl;

 cout << "Complex Number 1 image part = " << setw(4) << compOne.getImagPart() << "j" << endl;

 cout << "Complex Number 2 real part = " << setw(4) << compTwo.getRealPart() << endl;

 cout << "Complex Number 2 image part = " << setw(4) << compTwo.getImagPart() << "j" << endl;

 cout << "Complex Number 3 real part = " << setw(4) << compThree.getRealPart() << endl;

 cout << "Complex Number 3 imag part = " << setw(4) << compThree.getImagPart() << "j" << endl;
 cout << endl << "Set Complex 3 = Complex 1 + Complex 2 using Overloaded + Operator." << endl << endl;

 compThree = compOne + compTwo;
 cout << "Complex Number 1 real part = " << setw(4) << compOne.getRealPart() << endl;

 cout << "Complex Number 1 image part = " << setw(4) << compOne.getImagPart() << "j" << endl;

 cout << "Complex Number 2 real part = " << setw(4) << compTwo.getRealPart() << endl;

 cout << "Complex Number 2 image part = " << setw(4) << compTwo.getImagPart() << "j" << endl;

 cout << "Complex Number 3 real part = " << setw(4) << compThree.getRealPart() << endl;

 cout << "Complex Number 3 image part = " << setw(4) << compThree.getImagPart() << "j" << endl;
 cout << endl << "Set Complex Number 3 = Complex Number 1 + Complex Number 2 using Overloaded - Operator." << endl << endl;

 compThree = compOne - compTwo;
 cout << "Complex Number 1 real part = " << setw(4) << compOne.getRealPart() << endl;

 cout << "Complex Number 1 image part = " << setw(4) << compOne.getImagPart() << "j" << endl;

 cout << "Complex Number 2 real part = " << setw(4) << compTwo.getRealPart() << endl;

 cout << "Complex Number 2 image part = " << setw(4) << compTwo.getImagPart() << "j" << endl;

 cout << "Complex Number 3 real part = " << setw(4) << compThree.getRealPart() << endl;

 cout << "Complex Number 3 image part = " << setw(4) << compThree.getImagPart() << "j" << endl;
 cout << endl << "Set Complex Number 3 = Complex Number 1 *Complex Number 2 using Overloaded * Operator." << endl << endl;

 compThree = compOne * compTwo;
 cout << "Complex Number 1 real part = " << setw(4) << compOne.getRealPart() << endl;

 cout << "Complex Number 1 image part = " << setw(4) << compOne.getImagPart() << "j" << endl;

 cout << "Complex Number 2 real part = " << setw(4) << compTwo.getRealPart() << endl;

 cout << "Complex Number 2 image part = " << setw(4) << compTwo.getImagPart() << "j" << endl;

 cout << "Complex Number 3 real part = " << setw(4) << compThree.getRealPart() << endl;

 cout << "Complex Number 3 image part = " << setw(4) << compThree.getImagPart() << "j" << endl;
 cout << endl << "Set Complex Number 3 = Complex Number 1 / Complex Number 2 using Overloaded / Operator." << endl << endl;

 compThree = compOne / compTwo;
 cout << "Complex Number 1 real part = " << setw(4) << compOne.getRealPart() << endl;

 cout << "Complex Number 1 imag part = " << setw(4) << compOne.getImagPart() << "j" << endl;

 cout << "Complex Number 2 real part = " << setw(4) << compTwo.getRealPart() << endl;

 cout << "Complex Number 2 image part = " << setw(4) << compTwo.getImagPart() << "j" << endl;

 cout << " Complex Number 3 real part = " << setw(4) << compThree.getRealPart() << endl;

 cout << " Complex Number 3 image part = " << setw(4) << compThree.getImagPart() << "j" << endl;
 cout << endl << "Ending Complex Number Program" << endl << endl;

 system("pause");
}
//ComplexNumber.cpp
#include "ComplexNumber.h"

ComplexNumber ComplexNumber:: operator+ (ComplexNumber c) {
	ComplexNumber tmp;
 tmp.real=this->real+c.real;
 tmp.imag=this->imag+c.imag;
 return tmp;
}
ComplexNumber ComplexNumber:: operator- (ComplexNumber c) {
	ComplexNumber tmp;
 tmp.real=this->real - c.real;
 tmp.imag=this->imag - c.imag;
 return tmp;
}
ComplexNumber ComplexNumber:: operator* (ComplexNumber c) {
	ComplexNumber tmp;
 tmp.real=(real*c.real)-(imag*c.imag);
 tmp.imag=(real*c.imag)+(imag*c.real);
 return tmp;
}
ComplexNumber ComplexNumber:: operator/ (ComplexNumber c) {
	ComplexNumber tmp;
 float div=(c.real*c.real) + (c.imag*c.imag);
 tmp.real=(real*c.real)+(imag*c.imag);
 tmp.real/=div;
 tmp.imag=(imag*c.real)-(real*c.imag);
 tmp.imag/=div;
 return tmp;
}
void ComplexNumber:: operator= (ComplexNumber c) {
	real=c.real;
 imag=c.imag;
}
ostream& operator<< (ostream &out, ComplexNumber c) {
	out << c.real << "+" << c.imag << "i";
	return out;
}
float ComplexNumber::getRealPart(){
	return real;
}
float ComplexNumber::getImagPart(){
	return imag;
}

// ComplexNumber.h

#include <iostream>

using namespace std;

class ComplexNumber {
 public:
 ComplexNumber(float r = 0.0, float i = 0.0) : real(r), imag(i) { }

 ComplexNumber operator+ (ComplexNumber c);
 ComplexNumber operator- (ComplexNumber c);
 ComplexNumber operator* (ComplexNumber c);
 ComplexNumber operator/ (ComplexNumber c);
 void operator= (ComplexNumber c);
 float getRealPart();
 float getImagPart();

 friend ostream& operator <<(ostream &s,ComplexNumber c);
 private:
	float real;
	float imag;
};

Output:
[image:]

Answer the following questions:
Describe any problems encountered and how these problems were solved.
My answer was not always coming out correct. I showed my program to the instructor and he suggested that I use data type instead of pointer data type. This solved the problem.
Describe the results of your lab
When I run my program it takes in a value then define a new set of data-type, dependent operations on existing operators, or functions
What did you learn from this lab?
I learned that selecting the correct data type is crucial
I learned how to perform arithmetic operations in C++
image1.png

